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Pattern formation arising from the Turing instability in three dimensions is considered. Two three-
dimensional patterns, with fcc and double-diamond structure, are found. These can be stable for realistic
parameter values in the Brusselator model of the instability.

PACS number(s): 47.54.+r1, 47.20.Ky, 02.20.—a

Recent experiments on the Turing instability [1] have
stimulated renewed interest in the formation of spatially pe-
riodic patterns in three dimensions. In contrast to the much
studied pattern-forming instabilities in hydrodynamics the
length scale of the Turing instability is determined by local
diffusion coefficients and thus is unrelated to any externally
imposed length scale. Consequently such an instability
readily produces three-dimensional patterns, provided only
that its length scale is small relative to the dimensions of the
apparatus. In this paper we show, quite generally, that insta-
bilities of this kind can lead to two new types of stable three-
dimensional (3D) patterns, one with fcc structure and the
other with double-diamond structure, and illustrate the re-
sults using the Brusselator model of the Turing instability.

We assume the medium is isotropic and homogeneous,
and the instability enters with wave number k.. We look for
spatially periodic patterns and hence pose the problem on a
triply periodic lattice produced by wave vectors k with
|k| =k, . This assumption allows us to formulate the problem
as a finite-dimensional equivariant bifurcation problem [2]. It
also limits our stability analysis to perturbations defined on
the lattice, but related calculations on the bec [3,4] and 2D
hexagonal [5] lattices have been confirmed by experiments
[6] and numerical simulations [4,5].

Although there is a large number of possible lattices in
three dimensions [7] we focus here, in contrast to earlier
work [3,4], on the face-centered-cubic (fcc) lattice. Our
choice implies the selection of 8 marginally stable wave vec-
tors from the sphere, corresponding to the vertices of a cube.
‘We write these as ikj , where

k, k,
k1=—3(1,1,1), k,=—(1,—1,—1),

V3 V3

c c

V3 V3

relative to Cartesian coordinates (x,y,z). The symmetry of
the problem is given by the symmetry of the unit cell (the
cube) together with translations in the three principal direc-
tions. This group is I=T2+0&Z,, where T3 is the three-
torus of translations, O is the group of all orientation-
preserving symmetries of the cube, and the nontrivial
element of Z, represents inversion through the origin.

Any scalar quantity X with the periodicity of the lattice
can be written in the form

k3:

(_lvla—_l)a k4:

(—-1,—1,1) 1)
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4
X(x,0)= >, (z;e™*+Z;e "% *)+ (higher-order terms)
=

2

for some set of complex amplitudes z;(#). In order that the
functions X(yx,t) obtained by applying the symmetries y
e " also be solutions, the evolution equations for the (com-
plex) amplitudes z,;(¢) must be I' equivariant; i.e., they must
commute with an appropriate representation of I'. The most
general such equations can be written in the form [8]

21=2,(hy+u hs+uihs+uihs)
+2y7324(patups+uips+uipe), 3)

where each / and p is an arbitrary real-valued function of u.2
five elementary I' invariants o, o,, 03, 04, g and a dis-
tinguished bifurcation parameter A. Here

o1=uituytustuy, (4a)

Oy=uuytuustuuytuustusuytusuy, (4b)

O3= U Uplst U Uyt U Uyt UyUsly, (4¢)
O4=UUrU3Uy, (4d)
q221222314+212223z_.4, (46)

and u;=|z,/%>. The equations for z,, etc., follow from the
requirement of I' equivariance.
By rescaling z, ¢, and N we can transform Egs. (3) into

Z1=zi(N+ao|tu,)+cirziza+0(2d), 5)
where
hy
_ b _P3
a= o c_h3’ (6)

evaluated at N\=0,=0,=03=0,=¢g=0. If h;3<0, the
stable eigenvalues of (5) correspond to unstable eigenvalues
of the original system (3), and vice versa. The truncated
equations form a special case of those studied in Ref. [9].
The system (5) has the trivial solution z= 0 corresponding
to the spatially uniform state of the system. In the following
we assume the nondegeneracy conditions a# —1,— 1/2;
daxc#—1; c#0,x1; (3+c?a+1+c*#0. Near \=0
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TABLE I. The primary solution branches on the fcc lattice.

Branch (21,22,23,24) oy Branching equation

0 (0,0,0,0) 0 o=0

1 (x,0,0,0) x? RN+ (hy g +h3)o=0(4)

2 (x,x,0,0) 2x? hiah+ 32k o +h3)o =0(4)

3 (x,2,x,x) 4x? hiaN+3(4hy g +hy+p3)oy=0(4)

3 (—X,%,%,%) 4x2 hiaN+5(4hy o +hy—p3)o=0(4)

4 (¥, x,%x,x) y=(p3/h3)x hl,)\)\+(3h1.a"+h3)x2+(h1,u—]+h3)y2=0(4)

there are five branches of nontrivial equilibria, whose forms
are given in Table I. The nondegeneracy conditions guaran-
tee that these solutions, and no others, exist near A =0. The
existence of the first four of these solution branches is also
guaranteed group theoretically by the equivariant branching
lemma [2]. The solution branches can be found by restricting
Egs. (5) to the four solution types, and are given in Table 1.
The signs of the eigenvalues describing the stability proper-
ties of each of these patterns with respect to perturbations on
the fcc lattice are listed in Table II. Note that solutions 2 and
4 can never be stable, while at most one of 3= can be stable.

Branch 1 represents simple rolls or lamelle, while the

|

I+m+n=0,1 (mod 4)
[+m+n=23 (mod 4)

The maxima thus form a diamond lattice, with two points at
+1L(1,1,1). The minima form another, interlocking, dia-
mond lattice, shifted by +L(1,1,1) from the maxima. By
analogy with solid state physics [10] we refer to this as the
double-diamond solution. The solutions 3* are illustrated in
Fig. 1. The remaining solution 4 has submaximal isotropy
and can be thought of as a particular (nonlinear) superposi-
tion of 3*. In contrast to other problems of this type [9] this
branch is always present.

As shown in Fig. 2 the nondegeneracy conditions divide
the parameter space into 26 regions with different bifurcation
diagrams. The regions containing stable solutions are listed
in Table II. The six possible bifurcation diagrams containing

unstable solution 2 represents a rhombohedral prism state. Of
greatest interest are the two potentially stable three-
dimensional states 3*. The branch 3 represents a solution
whose maxima and minima each form a face-centered cubic
lattice. The remaining solution, 3 ~, has the form

X(x)=—cos(k; - x) +cos(k, - x) + cos(kj3 - x) + cos(Kk, - X)

+ (higher-order terms), @)

having maxima and minima at 1L(2[+12m+12n+1).
Here L=2m/k. and I, m, and n are integers satisfying

and all same parity (maxima)

and all same parity (minima) . (8)

stable solutions are shown in Fig. 3.

Thus far our analysis has been model independent, but for
illustration we look at a concrete example, the Brusselator
model of the Turing instability. This model is defined by

X=D V2X—(B+1)X+X?*Y+A, (9a)
Y=D V?Y+BX—-X°Y, (9b)

where A, B, X, and Y are chemical concentrations, A, B
being kept in constant supply, and D,., D, are the diffusivi-

TABLE II. The eigenvalues of the solution branches on the fcc lattice, and the regions where stable
branches exist. (Bold means stable for 4;<<0, plain means stable for 45>0.)

Branch Eigenvalues Regions of stability
0 A\ (8 times) All

1 h]_gl+h3,—h3(6 times), O(once) A,B,C D,E,F
2 2hy 5, th3,hy,—(h3Eps)(twice each), O(twice) (/]

3" 4hy o +h3+ps,—p3,hs—ps(3 times), 0(3 times) B,G K, L

37 4h,]0]+h3—p3,+p3,h3+p3(3 times), 0(3 times) E.HIL J

4 (Bhy o +h)x*+(hy o +h3)y?, hy(hi—p3)(twice), 0

—h3y(h3=p2),—h3, O3 times)
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FIG. 1. The (a) fcc and (b) double-diamond solutions shown by
means of horizontal sections. The grey scale indicates the magni-
tude of X(x), with white denoting maximum and black minimum.

ties of X, Y, respectively. Traditionally, B is considered the
bifurcation parameter. The equilibrium (X,Y)=(A,B/A) is
then unstable with respect to perturbations of the form
¢®* when B>B(k). The curve B(k) has a minimum at
|k|2=kaA/\/Dny and B(k.)=B.=[1+A \/DX/Dy]z.
Modes with this wave number are the first to lose stability as
B increases.

A 4
B
. C
—N -2 D
\ B

FIG. 2. The (a,c) plane showing the regions with different bi-
furcation diagrams. The solid line indicates the location of the Brus-
selator model as a function of R, with R increasing in the direction
of the arrows. For the right branch 4,<<0, while for the left branch
h3>0.

Region A Region B Region C
h >0 h >0 h >0
3 3 3

3+ 14

FIG. 3. The six bifurcation diagrams o; vs X (with ¢>0) con-
taining stable solutions, labeled by region. The stable branches are
denoted by a solid line. In regions B, I of Fig. 2 the relative ampli-
tude of branches 1 and 3* depends upon c. We assume in these
cases that 1 <c<(3. For ¢<0 the diagrams are the same, but with
the labels 3* and 3~ interchanged.

In order to make specific predictions for this model we
have computed the coefficients hy, , k3, and p3 using cen-

ter manifold reduction, obtaining [11]

1296— 1036R — 1706R?+ 1296R?
hl T =A > (loa)
I 75

e A 11464+ 8374R + 15229R? — 11464R>
3= 675 ’
(10b)

p3=A(48—36R—62R%*+48R%). (10c)

Here R=A+D,/D,= \/—B:— 1 and A is an arbitrary, positive,
irrelevant constant. As a result we predict that with respect to
perturbations defined on the fcc lattice, rolls are stable for
0.894<R<1.297, the fcc structure 1is stable for
0.855<R<0.907 or 1.265<R<1.329, and the double dia-
mond structure is stable for 0.925<R<1.228. This param-
eter region is outside that explored in recent simulations [4],
which have concentrated on considerably higher values of
R, suggesting that it might be fruitful to look for interesting
structures at lower values of R. Note, however, that the pos-
sibility of a stable double-diamond structure is not specific to
the Brusselator model. As shown here such patterns are ex-
pected to be present generically in models of three-
dimensional instabilities.
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